
KNIME Python Integration Guide
KNIME AG, Zurich, Switzerland

Version 4.3 (last updated on 2021-10-11)

Table of Contents

Introduction. 1

Quickstart . 1

Anaconda Setup . 2

Anaconda installation . 3

Creating a Conda environment . 3

Manually installing additional Python packages . 5

Troubleshooting . 6

Setting up the KNIME Python Integration . 6

Installation . 6

Configure the KNIME Python Integration . 6

Configure and export Python environments . 13

Manual configuration of Python environments per node . 17

Load Jupyter notebooks from KNIME . 17

MDF Reader . 18

Introduction

This guide describes how to install the KNIME Python Integration to be used with KNIME

Analytics Platform.



This guide refers to the KNIME Python Integration that is available since the

v3.4 release of KNIME Analytics Platform (not to be confused with the KNIME

Python Scripting Extension). The integration is the recommended and most

recent way to use arbitrary Python™ scripts in KNIME Analytics Platform and

supports both Python 2 as well as Python 3.

The KNIME Python Integration makes use of an existing Python, which is installed alongside

KNIME Analytics Platform. As the KNIME Python Integration depends on certain Python

packages, the Python installation needs to have these packages installed. Our recommended

way to set up such a Python environment is to use the Anaconda Python distribution from

Continuum Analytics. In this guide we describe how to install Python and the necessary

packages using Anaconda, as well as how to configure the KNIME Python Integration.

Quickstart

This quickstart guide shows you the basic steps required to install the KNIME Python

Integration and its prerequisites with Python. We do not provide any further details. If you’d

like a more thorough explanation, please refer to the more detailed Anaconda Setup Section.

1. First, install the KNIME Python Integration. In KNIME Analytics Platform, go to File →
Install KNIME Extensions. The KNIME Python Integration can be found under KNIME &

Extensions or by entering Python Integration into the search box.

2. Next, install Anaconda. It is used to manage Python environments. Anaconda can be

downloaded here (choose Anaconda with Python 3).

3. Finally, configure the KNIME Python Integration. Go to the Python Preference page

located at File → Preferences. Select KNIME → Python from the list on the left. In the

page that opens, select Conda under Python environment configuration. Next, provide

the path to your Anaconda installation folder (the default installation path is documented

here). Once a valid path has been entered, the conda version number is shown. Below

the conda version number you can choose which conda environment to be used for

Python 3 and Python 2 by selecting it from a combo box. If you have already set up a

Python environment, containing all the necessary dependencies for the KNIME Python

Integration, just select it from the list and you are ready to go. If you do not have a

suitable environment available, click the New environment… button. This opens the

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 1

https://www.knime.com/whats-new-in-knime-34#Python
https://www.anaconda.com/download/
https://www.anaconda.com/download
https://docs.anaconda.com/anaconda/user-guide/faq/

following dialog:

Provide a name for the new environment and click the Create new environment button.

This creates a new conda environment containing all the required dependencies for the

KNIME Python Integration.


Depending on your internet connection, the environment creation may

take a while as all packages need to be downloaded and extracted.

Once the environment is successfully created, the dialog closes and the new

environment is selected automatically.

Anaconda Setup

This section describes how to install and configure Anaconda to be used with the KNIME

Python Integration. Anaconda allows you to manage several so called conda environments,

which can contain different Python versions and different sets of packages, also using

different versions. A conda environment is essentially a folder that contains a specific Python

version and the installed packages. This means you can have several different Python

versions installed on your system at the same time in a clean and easy to maintain manner.

For KNIME, this is especially useful as it allows you to use Python 3 and Python 2 at the same

time without running into version issues; Anaconda keeps each environment nicely

encapsulated and independent of all others. Furthermore, Anaconda is able to create

predefined environments with a single command and makes it easy to add Python packages

to existing ones.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 2

Next, you will learn how to set up an environment that contains the dependencies needed for

the KNIME Python Integration.

Anaconda installation

First, you need to install the latest Anaconda version (Anaconda ≥ 2019.03, conda ≥
4.6.2). On the Anaconda download page you can choose between Anaconda with Python 3.x

or Python 2.x, however this only affects the root conda environment, which we will not use (as

we are creating our own). Therefore, you can choose either one (if you’re not sure, we

suggest selecting Python 3).

Creating a Conda environment

After Anaconda is installed, you need to create a new conda environment. As of KNIME

Analytics Platform 3.8.0, there are two options to do this:

Option 1: Automatic (recommended)

A Python environment containing all required dependencies can be automatically created in

the KNIME Python Integration Preference page. If you do not explicitly want to create an

environment manually, please continue with Setting up the KNIME Python Integration.

Option 2: Manual

If you do not want to create a conda environment automatically, you can create one manually

after Anaconda is installed. Do this with a YAML configuration file, which lists all of the

packages to be installed in the newly created environment. We have provided two such

configuration files below (one configuration file to create a new Python 3 environment and

one file for Python 2). They list all of the dependencies needed for the KNIME Python

Integration:

py3_knime.yml

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 3

https://www.anaconda.com/download
img/py3_knime.yml

name: py3_knime # Name of the created environment
channels: # Repositories to search for packages
- defaults
- anaconda
- conda-forge
dependencies: # List of packages that should be installed
- nbformat=4.4 # Notebook support
- scipy=1.1 # Notebook support
- pillow=5.3 # Image inputs/outputs
- cairo=1.14 # SVG support
- ipython=7.1 # Notebook support
- numpy=1.16.1 # N-dimensional arrays
- python=3.6 # Python
- matplotlib=3.0 # Plotting
- jpype1=0.6.3 # Databases
- pyarrow=0.11 # Arrow serialization
- jedi=0.13 # Python script autocompletion
- python-dateutil=2.7 # Date and Time utilities
- pandas=0.23 # Table data structures
- libiconv=1.15 # MDF Reader node
- asammdf=5.19.14 # MDF Reader node

py2_knime.yml

name: py2_knime # Name of the created environment
channels: # Repositories to search for packages
- defaults
- anaconda
- conda-forge
dependencies: # List of packages that should be installed
- python=2.7 # Python
- pandas=0.23 # Table data structures
- jedi=0.13 # Python script autocompletion
- parso=0.7.1 # Jedi dependency this is the last version compatible with 2.7
- python-dateutil=2.7 # Date and Time utilities
- numpy=1.15 # N-dimensional arrays
- cairo=1.14 # SVG support
- pillow=5.3 # Image inputs/outputs
- matplotlib=2.2 # Plotting
- pyarrow=0.11 # Arrow serialization
- IPython=5.8 # Notebook support
- nbformat=4.4 # Notebook support
- scipy=1.1 # Notebook support
- jpype1=0.6.3 # Databases
- protobuf=3.5 # Serialization for deprecated Python nodes

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 4

img/py2_knime.yml



The above configuration files only contain the Python packages that the KNIME

Python Integration depends on. If you want to use more Python packages in

KNIME you can either add the name of the package at the end of the

configuration file or add them after the environment has been created.

For example, for Python 3 you can use the py3_knime.yml and download it to any folder on

your system (e.g. your home folder). In order to create an environment from this file, open a

shell (Linux), terminal (Mac), or Anaconda prompt (Windows, can be found by entering

anaconda in Windows Search), change the directory to the folder that contains the

configuration file and execute the following command:

conda env create -f py3_knime.yml

This command creates a new environment with the name provided at the top of the

configuration file (of course you can change the name). It also downloads and installs all of

the listed packages (depending on your internet speed, this may take a while).

If you want to use both Python 3 and Python 2 at the same time, just repeat the above steps

using the respective configuration file.


The list of dependencies for Python 3 and Python 2 is almost the same,

however version numbers change.

After Anaconda has successfully created the environment, Python is all set up and you are

ready to proceed with Setting up the KNIME Python Integration.

Further information on how to manage Anaconda environments can be found here.

Manually installing additional Python packages

The Anaconda configuration files listed above only contain the packages to be installed so

that the KNIME Python Integration works properly. Hence, if you want to use Python

packages other than the ones listed in the configuration files, these can be easily added

manually after the environment has been created. E.g. if you want to use functionality from

scikit-learn in KNIME Python nodes, you can use the following command:

conda install --name <ENV_NAME> scikit-learn

Just replace <ENV_NAME> with the name of the environment in which you want to install the

package.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 5

img/py3_knime.yml
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html


You can easily specify a specific version of the package with e.g. scikit-

learn==0.20.2

Further information on how to manage Anaconda packages can be found here.

Troubleshooting

Mac Matplotlib

On Mac, there may be issues with the matplotlib package. The following error:

libc++abi.dylib: terminating with uncaught exception of type NSException

can be resolved by executing the following commands:

mkdir ~/.matplotlib
echo "backend: TkAgg" > ~/.matplotlib/matplotlibrc

Setting up the KNIME Python Integration

This section describes how to install and configure the KNIME Python Integration using an

existing Anaconda environment. If you haven’t set up Anaconda and/or the recommended

Python environment yet, please refer to the Anaconda Setup guide.

Installation

From KNIME Analytics Platform, install the KNIME Python Integration by going to File →
Install KNIME Extensions. The KNIME Python Integration can be found under KNIME &

Extensions or by entering Python Integration into the search box.

Configure the KNIME Python Integration

Now tell KNIME which Python environment should be used. Go to the Preference page of the

KNIME Python Integration located at File → Preferences, and then select KNIME → Python

from the list on the left. A dialog opens giving you two options for configuring the Python

environment:

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 6

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html

Option 1: Conda (recommended)

Select Conda under Python environment configuration. The dialog should look like the

screenshot shown below.

In this dialog, provide the path to the folder containing your Anaconda installation (the default

installation path is documented here). Once you have entered a valid path, the installed conda

version is displayed and KNIME automatically checks for all available conda environments.

Underneath the conda version number, you can choose which conda environment should be

used for Python 3 and Python 2 by selecting it from a combo box. If you have already set up a

Python environment containing all the necessary dependencies for the KNIME Python

Integration, just select it from the list and you are ready to go. If you do not have a suitable

environment available, click the New environment… button. This opens the following dialog:

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 7

https://docs.anaconda.com/anaconda/user-guide/faq/

Provide a name for the new environment and click the Create new environment button. This

creates a new conda environment containing all required dependencies for the KNIME Python

Integration.


Depending on your internet connection, the environment creation may take a

while as all packages need to be downloaded and extracted.

Once the environment is successfully created, the dialog closes and the new environment is

selected automatically. If everything worked out fine, the Python version is now shown below

the environment selection and you are ready to go.

Option 2: Manual

If you choose the manual setup, you have the following options:

1. Point KNIME to a Python executable of your choice

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 8

2. Point KNIME to a start script which activates the environment you want to use for

Python 2 and Python 3 respectively. This option assumes that you have created a

suitable Python environment earlier with a Python virtual environment manager of your

choice.

In order to use the created environment for the KNIME Python Integration, you need to

create a start script (shell script on Linux and Mac, bat file on Windows).

The script has to meet the following requirements:

◦ It has to start Python with the arguments given to the script (please make sure

that spaces are properly escaped)

◦ It has to output standard and error out of the started Python instance

◦ It must not output anything else.

Here we provide an example shell script for the Python environment on Linux and Mac.

Please note that on Linux and Mac you additionally need to make the file executable

(i.e. chmod gou+x py3.sh).

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 9

#! /bin/bash
Start by making sure that the anaconda folder is on the PATH
so that the source activate command works.
This isn't necessary if you already know that
the anaconda bin dir is on the PATH
export PATH="<PATH_WHERE_YOU_INSTALLED_ANACONDA>/bin:$PATH"

conda activate <ENVIRONMENT_NAME>
python "$@" 1>&1 2>&2

On Windows, the script looks like this:

@REM Adapt the folder in the PATH to your system
@SET PATH=<PATH_WHERE_YOU_INSTALLED_ANACONDA>\Scripts;%PATH%
@CALL activate <ENVIRONMENT_NAME> || ECHO Activating python environment failed
@python %*



These are example scripts for conda. You may need to adapt them for

other tools by replacing the conda-specific parts and you will need to edit

them in order to point to the location of your environment manager

installation and to activate the correct environment.

After creating the start script you have to point KNIME to its location. In the Python

Preferences page of KNIME select the option Manual and add the path to the script.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 10

Figure 1. KNIME Python Preferences page. Here you can set the path to the executable

script that launches your Python environment.

If you like, you can have configurations for both Python 2 and Python 3 (as is shown

above). Just select the one that you would like to have as the default. If everything is

set correctly, the Python version is now shown in the dialog window and you are ready

to go.

Serialization library

You can choose which serialization library should be used by the KNIME Python Integration

to transfer data from KNIME Analytics Platform to Python.

 This option does not usually need to be changed and can be left as the default.

Some of these serialization libraries have additional dependencies stated below, however if

you followed the Anaconda Setup, all required dependencies are already included (see YAML

configuration files on the Anaconda Setup guide). Currently, there are three options:

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 11

• Flatbuffers Column Serialization (default & recommended): no additional dependencies

• Apache Arrow: depends on pyarrow version 2.0.0 on macOS/Linux and 1.0.0 on

Windows

• CSV (Experimental): depends on pandas version 0.23

Advanced

A further Advanced option is also available to set up the options of the pre-launched Python

processes. In the background, KNIME Analytics Platform initializes and maintains a pool of

Python processes that can be used by individual Python nodes, reducing the startup cost

when executing any Python nodes. Here, you can set up the pool size in the field Maximum

number of provisioned processes and the duration in minutes before recycling idle processes

in the pool in the field Expiration duration of each process (in minutes).

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 12

Configure and export Python environments

Besides setting up Python for your entire KNIME workspace via the Preference page, you can

also use the Conda Environment Propagation node to set up specific Python environments to

propagate the environment to downstream Python nodes. This node also allows you to

export the specific Python environment together with your workflows.

This node is also useful to make workflows that contain Python nodes more portable by

allowing to recreate the Conda environment used on the source machine (for example your

personal computer) on the target machine (for example a KNIME Server instance).

Configure the Python environment with Conda Environment Propagation node

To configure the node follow these steps:

1. On your local machine, you need to have Conda set up and configured in the

Preferences of the KNIME Python Integration as described in the Anaconda Setup

section

2. Open the node configuration dialog and select the Conda environment you want to

propagate and the packages to include in the environment in case it will be recreated

on a different machine

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 13

https://kni.me/n/7HrPteTMsla4bZml

3. The Conda Environment Propagation node outputs a flow variable conda.environment

which contains the necessary information about the Python environment (i.e. the name

of the environment and the respective installed packages and versions). The flow

variable can then be fed to any Python node which will use that environment to run

Python by connecting the flow variable ports of the nodes.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 14

run a python script

Conda Environment
Propagation Python Script

run a python script

Conda Environment
Propagation Python Script

4. Successively open the configuration dialogues of the Python node and all subsequent

Python nodes in the workflow that you want to make portable. Upon opening their

dialogues for the very first time, they will automatically pick up the environment by

setting their respective Python 2 and/or Python 3 entries on the Flow Variables tab to

the propagated conda.environment variable.

Export a Python environment with a workflow

Once you configured the Conda Environment Propagation node and set up the desired

workflow, you might want to run this workflow on a target machine, for example a KNIME

Server instance.

1. Deploy the workflow by uploading it to the KNIME Server, sharing it via the KNIME Hub,

or exporting it. Make sure that the Conda Environment Propagation node is reset before

or during the deployment process.

2. On the target machine, Conda must also be set up and configured in the Preferences of

the KNIME Python Integration. If the target machine runs a KNIME Server, you may need

to contact your server administrator and/or refer to the Server Administration Guide in

order to do this.

3. During execution (on either machine), the node will check whether a local Conda

environment exists that matches its configured environment. When configuring the

node you can choose which modality will be used for the Conda environment validation

on the target machine. Check name only will only check for the existence of an

environment with the same name as the original one, Check name and packages will

check both name and requested packages to correspond, while Always overwrite

existing environment will disregard the existence of an equal environment on the target

machine and will recreate it.



This option will affect the speed of execution of the node as Conda will

need an increasing amount of time if the check of the environment is

based only on the name of the environment, or if a packages checks is

also requested.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 15

https://docs.knime.com/2020-12/server_admin_guide/index.pdf


Please be aware that exporting Python environments between systems that run

different Operating Systems might cause some libraries to conflict.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 16

Manual configuration of Python environments per node

You can also configure individual nodes manually to use specific Python environments. This

is done via flow variables python2Command and python3Command that each Python scripting

node offers under the Flow Variables tab in its configuration dialog. Both variables accept the

path to a Python start script like in the Manual case above. Which of the two flow variables is

respected depends on whether a node is using Python 2 or Python 3. This can either be

configured via option Use Python Version under the Options tab in the node’s configuration

dialog or via flow variable pythonVersionOption which accepts either python2 or python3 as

value.

Load Jupyter notebooks from KNIME

Existing Jupyter notebooks can be accessed within Python Script nodes using the

knime_jupyter Python module (knime_jupyter will be imported automatically). Notebooks

can be opened via the function knime_jupyter.load_notebook, which returns a standard

Python module. The load_notebook function needs the path (path to the folder that contains

the notebook file) and the name of the notebook (filename) as arguments. After a notebook

has been loaded, you can call functions that are defined in the code cells of the notebook like

any other function of a Python module. Furthermore, you can print the textual content of each

cell of a Jupyter notebook using the function knime_jupyter.print_notebook. It takes the

same arguments as the load_notebook function. An example script for a Python Script node

loading a notebook could look like this:

Path to the folder containing the notebook, e.g. the folder 'data' contained
in my workflow folder
notebook_directory = "knime://knime.workflow/data/"

Filename of the notebook
notebook_name = "sum_table.ipynb"

Load the notebook as a Python module
my_notebook = knime_jupyter.load_notebook(notebook_directory, notebook_name)

Print its textual contents
knime_jupyter.print_notebook(notebook_directory, notebook_name)

Call a function 'sum_each_row' defined in the notebook
output_table = my_notebook.sum_each_row(input_table)

The load_notebook and print_notebook functions have two optional arguments:

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 17

• notebook_version: The Jupyter notebook format major version. Sometimes the version

can’t be read from a notebook file. In these cases, this option allows to specify the

expected version in order to avoid compatibility issues. Should be an integer.

• only_include_tag: Only load cells that are annotated with the given custom cell tag

(since Jupyter 5.0.0). This is useful to mark cells that are intended to be used in a

Python module. All other cells are excluded. This is e.g. helpful to exclude cells that do

visualization or contain demo code. Should be a string.



The Python nodes support code completion similar to an IDE. Just hit ctrl-

space (command-space on Mac) e.g. after knime_jupyter. in order to show the

available methods and documentation (knime_jupyter refers to the imported

knime_jupyter Python module, e.g. see script example above).



The Jupyter notebook support for the KNIME Python Integration depends on

the packages IPython, nbformat, and scipy, which are already included if you

used the configuration files from the Anaconda Setup.

You can find example workflows using the knime_jupyter Python module on our EXAMPLES

server.

MDF Reader

Similar to the KNIME Deep Learning Integration, the MDF Reader node requires certain

Python packages to be installed in the Python 3 environment. Since the v4.1 release of

KNIME Analytics Platform, these will be automatically installed if you set up your Python

environment via the Python Preference page (see here). The required packages are the

following:

numpy=1.16.1
libiconv=1.15
asammdf=5.13.13


The MDF Reader node requires a newer numpy version (1.16.1) compared to the

numpy version (1.15) required before.

KNIME Python Integration Guide

© 2020 KNIME AG. All rights reserved. 18

https://www.knime.com/example-workflows
https://www.knime.com/example-workflows

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Python Integration Guide
	Table of Contents
	Introduction
	Quickstart
	Anaconda Setup
	Anaconda installation
	Creating a Conda environment
	Manually installing additional Python packages
	Troubleshooting

	Setting up the KNIME Python Integration
	Installation
	Configure the KNIME Python Integration
	Configure and export Python environments
	Manual configuration of Python environments per node

	Load Jupyter notebooks from KNIME
	MDF Reader

