I have now downgraded pandas to 1.2.5 and the environment is as follows
$ conda list |grep "pandas\|keras\|numpy\|tensorflow\|python"
ipython 8.18.1 pyh707e725_3 conda-forge
keras 2.4.3 hd3eb1b0_0
keras-base 2.4.3 pyhd3eb1b0_0
keras-preprocessing 1.1.2 pyhd3eb1b0_0
numpy 1.23.5 py39hf838250_0
numpy-base 1.23.5 py39h1e6e340_0
pandas 1.2.5 py39h295c915_0
python 3.9.19 h0755675_0_cpython conda-forge
python-dateutil 2.9.0.post0 pyhff2d567_1 conda-forge
python-fastjsonschema 2.21.1 pyhd8ed1ab_0 conda-forge
python-flatbuffers 1.12 pyhd8ed1ab_1 conda-forge
python-tzdata 2025.2 pyhd8ed1ab_0 conda-forge
python_abi 3.9 5_cp39 conda-forge
tensorflow 2.4.1 mkl_py39h4683426_0
tensorflow-base 2.4.1 mkl_py39h43e0292_0
tensorflow-estimator 2.6.0 pyh7b7c402_0
But this results in the following error
Keras Network Learner
Execute failed: An error occurred while creating the Keras network from its layer specifications. Details: Cannot convert a symbolic Tensor (lstm_1/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported Traceback (most recent call last): File "<string>", line 5, in <module> File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 660, in __call__ return super(RNN, self).__call__(inputs, **kwargs) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer.py", line 951, in __call__ return self._functional_construction_call(inputs, args, kwargs, File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer.py", line 1090, in _functional_construction_call outputs = self._keras_tensor_symbolic_call( File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer.py", line 822, in _keras_tensor_symbolic_call return self._infer_output_signature(inputs, args, kwargs, input_masks) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer.py", line 863, in _infer_output_signature outputs = call_fn(inputs, *args, **kwargs) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent_v2.py", line 1157, in call inputs, initial_state, _ = self._process_inputs(inputs, initial_state, None) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 859, in _process_inputs initial_state = self.get_initial_state(inputs) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 642, in get_initial_state init_state = get_initial_state_fn( File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 2506, in get_initial_state return list(_generate_zero_filled_state_for_cell( File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 2987, in _generate_zero_filled_state_for_cell return _generate_zero_filled_state(batch_size, cell.state_size, dtype) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 3003, in _generate_zero_filled_state return nest.map_structure(create_zeros, state_size) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/util/nest.py", line 659, in map_structure structure[0], [func(*x) for x in entries], File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/util/nest.py", line 659, in <listcomp> structure[0], [func(*x) for x in entries], File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/keras/layers/recurrent.py", line 3000, in create_zeros return array_ops.zeros(init_state_size, dtype=dtype) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/util/dispatch.py", line 201, in wrapper return target(*args, **kwargs) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/ops/array_ops.py", line 2819, in wrapped tensor = fun(*args, **kwargs) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/ops/array_ops.py", line 2868, in zeros output = _constant_if_small(zero, shape, dtype, name) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/ops/array_ops.py", line 2804, in _constant_if_small if np.prod(shape) < 1000: File "<__array_function__ internals>", line 180, in prod File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/numpy/core/fromnumeric.py", line 3045, in prod return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/numpy/core/fromnumeric.py", line 86, in _wrapreduction return ufunc.reduce(obj, axis, dtype, out, **passkwargs) File "/home/kurt/anaconda3/envs/py3_DL/lib/python3.9/site-packages/tensorflow/python/framework/ops.py", line 852, in __array__ raise NotImplementedError( NotImplementedError: Cannot convert a symbolic Tensor (lstm_1/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported